Considering Rust for
Scientific Software

Max Orok
RustFest Global 2020

Who am 1?

Mechanical engineering master’s student at the University of
Ottawa

Radiation modelling researcher
Contractor at Mevex, a linear accelerator manufacturer

https://github.com/mxxo

Scientific software

Written by a small team with limited time and resources
Correctness is extremely important

Performance is usually also very important

“Developers usually have other jobs”

Scientific software is usually written by people may not identify
as developers first (physicists, chemists, engineers)

Programs are a means to an end
Compilation is sometimes the first and last unit test

“If it works, don’t touch it”

The Therac-25 Legacy

The Therac-25 was a radiation therapy device created by Atomic
Energy of Canada

The Therac-25 was part of 6 major accidents between 1985
and 1987

Investigators found a variety of problems, but data races in the
control software were part of the failure

Software bugs have real-world consequences

Scientific computing and its discontents
Python as lingua franca
C and C++ as bedrock supporting Python

(With apologies to Fortran, Julia and others)

An issue with the current landscape

Going from Python to C++ should be a natural step:

e Many Python libraries build on top of C++ implementations

e Researcher time is precious, many Python scripts run too
slowly

Unfortunately this is often a very difficult transition

Rust is a viable alternative to C++ in this context

Why not Rust?

A relatively young language (Python is 30, C++ is 40)
Steep learning curve

You have a large codebase written in another language
An important library is missing from the ecosystem

Concerns about a single vendor

Rust alighs with my goals as a researcher

| want to write the fastest code | can, with as few bugs as
possible.

How Rust helps:

1.

2.
3.
4

Entire classes of bugs are eliminated

Speed without sacrificing productivity

A language explicitly designed for non-expert users
Built-in documentation and tests

No implicit conversions between primitive types

error[EO308]: mismatched types
—> src/main.rs:2:18

let xz f64. = 5 ./ 3

expected , found integer

expected due to this

error: aborting due to previous error

... this can be noisy but is better than bugs later on

error[EO308]:
—> src/main.

help: you can
the converted

let y:

mismatched types
rs:3:20

" expected ‘usize”, found “u32°

convert an "u32" to "usize and panic if

value wouldn't fit

usize = x.try into().unwrap();

ANNANNAANAANAANAANANNANNANNNANAAANANANANN

Safe defaults...

thread 'main' panicked at
‘index out of bounds: the len is 3 but the

index is 10°'

12

Safe defaults... with opt-in low-level control

-537096032

This is generally not recommended, use with caution!
Calling this method with an out-of-bounds index is

undefined behavior even if the resulting reference is not
used. For a safe alternative see get.

13

Floating point numbers are treated with caution

match 0.1 + 0.1 + 0.1 {
.3 = println!("got 6.3"),

= println!("got something else"),

got something else

warning: floating-point types cannot be used in patterns
—> src/main.rs:3:9
l

3 0.3 = println!("got 06.3"),

l AAN

... which can be a little annoying sometimes

let mut xs: Ve vec![1.0, 12.0, 3.0, 100.0];
xs.sort();

error[E0277]: the trait bound “f64: std::cmp::0rd” is not satisfied
—> src/main.rs:3:8

xs.sort();
AMAY the trait “std::cmp::0Ord” is not implemented for ~f64°

let mut xs: Vec vec![1.0, 12.0, 3.0, 100.0];

Debugging and prototyping features

t#H derive(Debug)]

struct CoolData { [src/main.rs:12] cd = CoolData {

xs2: |
0.0,
1.0,

}
2.0,

1,

data: [
10.0,
20.0,

pub fn main() {
let c¢d = CoolData {
: vec![0.0, 1.0, 2.0],
. vec![10.0, 20.0, 30.0],

Integrated testing means tests are much more likely to
be written

fn some _math_expr(x:) -
16.0 * xxx + 100_000.0 * x.sin
}

i test]
fn some math_test() {

issert!((some math expr(10.0) - 47247.262536).abs() < 1e-6);
}

17

Doctests are a killer feature for scientific code

pub fn some math expr(x:) & {
16.0 * x#*x + 100_000.0 * x.sin() * x.cos()
}

pub fn some_math_expr(x: f64) -> f64

A very interesting math expression.

assert! ((some_math_expr(10.0) - 47247.262536).abs() < 1le-6);

Rust’s safety guarantees and solid fundamentals have
a large qualitative impact on what kind of code we’re

capable of writing

Take for instance, data races in multithreaded code...

19

From the Rustonomicon:

Data Races and Race Conditions

Safe Rust guarantees an absence of data races, which are defined as:

e two or more threads concurrently accessing a location of memory
e one of them is a write
e one of them is unsynchronized

20

... compared to the C++ Core Guidelines

CP.2: Avoid data races
Reason Unless you do, nothing is guaranteed to work and subtle
errors will persist.

Enforcement Some is possible, do at least something. There are
commercial and open-source tools that try to address this problem,
but be aware that solutions have costs and blind spots. Static tools
often have many false positives and run-time tools often have a

significant cost. [\ lelolsR{es]@sla=I@iee]Es. Using multiple tools can

catch more problems than a single one.

The thing that sets Rust apart is that software
engineering best practices are built into the
language and core tools

22

Choosing Rust will have the biggest impact for
small, resource-constrained teams who don’t
identify as expert software developers

23

Rust’s place in scientific computing

The speed and power of C++ without the sharp edges
A systems language explicitly designed to lower barriers

Companion and complement to C and C++

e There are many tradeoffs between these languages, and no
“correct” choice

Rust’s foundational values help us to write good software
24

