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Who am I?

2



Written by a small team with limited time and resources

Correctness is extremely important 

Performance is usually also very important

Scientific software
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Scientific software is usually written by people may not identify 
as developers first (physicists, chemists, engineers)

Programs are a means to an end

Compilation is sometimes the first and last unit test

“If it works, don’t touch it”

“Developers usually have other jobs” 
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The Therac-25 Legacy

The Therac-25 was a radiation therapy device created by Atomic 
Energy of Canada

The Therac-25 was part of 6 major accidents between 1985 
and 1987

Investigators found a variety of problems, but data races in the 
control software were part of the failure

Software bugs have real-world consequences
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Scientific computing and its discontents 

Python as lingua franca

C and C++ as bedrock supporting Python

(With apologies to Fortran, Julia and others)
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An issue with the current landscape

Going from Python to C++ should be a natural step: 

● Many Python libraries build on top of C++ implementations
● Researcher time is precious, many Python scripts run too 

slowly

Unfortunately this is often a very difficult transition

Rust is a viable alternative to C++ in this context
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A relatively young language (Python is 30, C++ is 40)

Steep learning curve

You have a large codebase written in another language

An important library is missing from the ecosystem

Concerns about a single vendor

Why not Rust?
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Rust aligns with my goals as a researcher

I want to write the fastest code I can, with as few bugs as 
possible.

How Rust helps:

1. Entire classes of bugs are eliminated
2. Speed without sacrificing productivity
3. A language explicitly designed for non-expert users
4. Built-in documentation and tests
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No implicit conversions between primitive types
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… this can be noisy but is better than bugs later on
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Safe defaults… 
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Safe defaults… with opt-in low-level control
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Floating point numbers are treated with caution
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… which can be a little annoying sometimes
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Debugging and prototyping features
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Integrated testing means tests are much more likely to 
be written
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Doctests are a killer feature for scientific code
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Rust’s safety guarantees and solid fundamentals have 
a large qualitative impact on what kind of code we’re 
capable of writing 

Take for instance, data races in multithreaded code… 
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From the Rustonomicon:
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… compared to the C++ Core Guidelines
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The thing that sets Rust apart is that software 
engineering best practices are built into the 

language and core tools
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Choosing Rust will have the biggest impact for 
small, resource-constrained teams who don’t 

identify as expert software developers
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The speed and power of C++ without the sharp edges

A systems language explicitly designed to lower barriers

Companion and complement to C and C++

● There are many tradeoffs between these languages, and no 
“correct” choice

Rust’s foundational values help us to write good software

Rust’s place in scientific computing
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