
Considering Rust for 
Scientific Software

Max Orok
RustFest Global 2020



Mechanical engineering master’s student at the University of 
Ottawa

Radiation modelling researcher

Contractor at Mevex, a linear accelerator manufacturer

https://github.com/mxxo

Who am I?

2



Written by a small team with limited time and resources

Correctness is extremely important 

Performance is usually also very important

Scientific software

3



Scientific software is usually written by people may not identify 
as developers first (physicists, chemists, engineers)

Programs are a means to an end

Compilation is sometimes the first and last unit test

“If it works, don’t touch it”

“Developers usually have other jobs” 

4



The Therac-25 Legacy

The Therac-25 was a radiation therapy device created by Atomic 
Energy of Canada

The Therac-25 was part of 6 major accidents between 1985 
and 1987

Investigators found a variety of problems, but data races in the 
control software were part of the failure

Software bugs have real-world consequences
5



Scientific computing and its discontents 

Python as lingua franca

C and C++ as bedrock supporting Python

(With apologies to Fortran, Julia and others)

6



An issue with the current landscape

Going from Python to C++ should be a natural step: 

● Many Python libraries build on top of C++ implementations
● Researcher time is precious, many Python scripts run too 

slowly

Unfortunately this is often a very difficult transition

Rust is a viable alternative to C++ in this context

7



A relatively young language (Python is 30, C++ is 40)

Steep learning curve

You have a large codebase written in another language

An important library is missing from the ecosystem

Concerns about a single vendor

Why not Rust?

8



Rust aligns with my goals as a researcher

I want to write the fastest code I can, with as few bugs as 
possible.

How Rust helps:

1. Entire classes of bugs are eliminated
2. Speed without sacrificing productivity
3. A language explicitly designed for non-expert users
4. Built-in documentation and tests

9



No implicit conversions between primitive types

10



… this can be noisy but is better than bugs later on

11



Safe defaults… 

12



Safe defaults… with opt-in low-level control

13



Floating point numbers are treated with caution

14



… which can be a little annoying sometimes

15



Debugging and prototyping features

16



Integrated testing means tests are much more likely to 
be written

17



Doctests are a killer feature for scientific code

18



Rust’s safety guarantees and solid fundamentals have 
a large qualitative impact on what kind of code we’re 
capable of writing 

Take for instance, data races in multithreaded code… 

19



From the Rustonomicon:

20



… compared to the C++ Core Guidelines

21



The thing that sets Rust apart is that software 
engineering best practices are built into the 

language and core tools

22



Choosing Rust will have the biggest impact for 
small, resource-constrained teams who don’t 

identify as expert software developers

23



The speed and power of C++ without the sharp edges

A systems language explicitly designed to lower barriers

Companion and complement to C and C++

● There are many tradeoffs between these languages, and no 
“correct” choice

Rust’s foundational values help us to write good software

Rust’s place in scientific computing

24


