
Piecing Together Rust🦀
It’s more than just writing code

By Tarun Pothulapati

About Me

● I’m Tarun Pothulapati 👋
● Engineer @ Buoyant i.e Makers of Linkerd.
● Prev: Intern at CNCF, working on Linkerd.
● Develops primarily in Golang but got started with Rust this

year.
● Contributing to Rust OSS projects like tracing, etc recently.
● Also, started biking recently and plan to do more of it.
● Find me at tarun.xyz

https://www.tarun.xyz/

Installation
Getting Rust

Rustup
● Toolchain (single installation of the Rust compiler) Multiplexer.
● Installs and manages multiple Rust toolchains.
● Each tools usually consists of multiple components.
● Some components involve rustc, cargo, rustfmt, rust-std, rustdoc, rls,

rust-analyzer, clippy, miri, rust-src, etc.
● Components availability may vary between different releases and toolchains.
● Custom toolchains are also supported to have local builds, etc.
● One type of toolchains is Channels.
● 3 different cycles:

○ Stable: 6 weeks
○ Beta: Released before a stable
○ Nightly: Daily

Compilation
● Formatting & Linting
● IDE Experience
● Documentation
● Compilation
● Testing
● Package Management

From Code to Binaries

Compilation
● Formatting & Linting
● IDE Experience
● Documentation
● Compilation
● Testing
● Package Management

From Code to Binaries

rustfmt

● A tool for formatting Rust code according to style guidelines.
● Very configurable and follows the Rust style guide.
● Usually ran by running `cargo fmt` to use the multiplexing

capabilities.
● Useful to enforce styling guidelines across rust repos to have

common way of understanding code.

https://github.com/rust-dev-tools/fmt-rfcs/blob/master/guide/guide.md

rust-clippy

● Collection of lints to catch common mistakes and find
improvements.

● Over 400 lints included.
● Types:

○ Perf improvements
○ Correctness bugs
○ Idiomatic Rust code
○ Simplicity, etc

Compilation
● Formatting & Linting
● IDE Experience
● Documentation
● Compilation
● Testing
● Package Management

From Code to Binaries

rust-analyzer

● Implementation of Language Server Protocol for Rust.
● Adds Intellisense, Refactoring, etc to your favourite Editors

and IDE’s.
● Improves performance drastically compared with that of

RLS.
● Leverages on-demand code analysis to be faster by

performing Incremental Compilation.

Compilation
● Formatting & Linting
● IDE Experience
● Documentation
● Compilation
● Testing
● Package Management

From Code to Binaries

rustdoc

● Allows generation of documentation for Rust projects.
● Documentation goes hand in hand with Code i.e above the

types, etc.
● Generates a markdown site that on top of the rust.docs UI

framework.
● /// is syntax sugar for #[doc], which is used to write

documentation.

Compilation
● Formatting & Linting
● IDE Experience
● Documentation
● Compilation
● Testing
● Package Management

From Code to Binaries

Compilation
● Formatting & Linting
● IDE Experience
● Documentation
● Compilation
● Testing
● Package Management

From Code to Binaries

`test` Attribute

● `cargo test` creates a test runner binary that runs functions
annotated with test attribute.

● Reports are also produced on the function outcome.
● Unit tests are present in the src directory itself.
● Integration tests are present in /tests directory instead.

Compilation
● Formatting & Linting
● IDE Experience
● Documentation
● Compilation
● Testing
● Package Management

From Code to Binaries

Cargo
More than a package manager

● Dependency Management
● Workspaces
● Features
● Binary Management

Cargo
More than a package manager

● Dependency Management
● Workspaces
● Features
● Binary Management

Cargo

● Manage dependencies and have repeatable builds.
● Metadata files to keep track of the package information.
● Performs builds by fetching package dependencies.
● Introduces a package layout.
● Acts like an umbrella tool for most operations.

Cargo
More than a package manager

● Dependency Management
● Workspaces
● Features
● Binary Management

Cargo Workspaces

● Workspace allows grouping a set of packages.
● Each package can be a binary or a library crate.
● It can help manage multiple related packages.
● Configured by adding a [workspace] section into Cargo.toml
● Packages share a common Cargo.lock and output directories

(i.e target).

Cargo
More than a package manager

● Dependency Management
● Workspaces
● Features
● Binary Management

Features

● Rust compiler has built in support for compile time feature
flags.

● Based on the feature flags configuration, The compilation is
affected.

● This is possible by using the `cfg` attributes in code.
● Very useful for packages to have multiple feature levels

based on the dependencies.
● A feature of a package is either an optional dependency, or a

set of other features.

Cargo
More than a package manager

● Dependency Management
● Workspaces
● Features
● Binary Management

Cargo with Binaries

● Cargo is built to be extensible with new commands without
having to modify cargo itself.

● `cargo expand` invokes `cargo-expand` from $PATH.
● Binaries can also be published on crates.io
● Cargo install can be used to retrieve and install binaries.
● These binaries are installed into `$HOME/.cargo` unless

overridden.

https://crates.io/

Debugging
Finding bugs and runtime

diagnostics.

● Logging
● Tracing
● GDB

Debugging
Finding bugs and runtime

diagnostics.

● Logging
● Tracing
● GDB

Crate log

● Contains `debug`, `error`, `info`, `log`, `trace`, `warn` macros
to report.

● Abstracts over the actual logging implementation.
● Consumer of a library can decide which implementation they

want to use.
● Low overhead when no implementation is specified.
● Simple API to implement your own logger implementation

Debugging
Finding bugs and runtime

diagnostics.

● Logging
● Tracing
● GDB

Crate tracing

● More than a logging library.
● Same simple API for consumers.
● Implements scoped, contextual, and structured diagnostic

instrumentation.
● Introduces a new primitive called Span, which represents a

period of time.
● Useful for Asynchronous Systems, Distributed Tracing

Instrumentation, etc.

Debugging
Finding bugs and runtime

diagnostics.

● Logging
● Tracing
● GDB

GDB (GNU Debugger)
● GNU Project debugger, allows us to understand what is going on inside the

program while it executes.
● Using GDB, the program’s running can be controlled and get information

from inside the code.
● It allows users to apply breakpoints and retrieve runtime information i.e

variables, stacks, etc.
● It also has support for various languages like C, C++, Go, etc.
● `rust-gdb` is a wrapper that provides pretty printers specific to rust, etc.

Thank You! 🦀
Questions?

