

About Me

I'm Tarun Pothulapati &

Engineer @ Buoyant i.e Makers of Linkerd.

Prev: Intern at CNCF, working on Linkerd.

Develops primarily in Golang but got started with Rust this
year.

Contributing to Rust OSS projects like tracing, etc recently.
e Also, started biking recently and plan to do more of it.

e Find me attarun.xyz

https://www.tarun.xyz/

Installation

Getting Rust

Rustup

Toolchain (single installation of the Rust compiler) Multiplexer.

Installs and manages multiple Rust toolchains.

Each tools usually consists of multiple components.

Some components involve rustc, cargo, rustfmt, rust-std, rustdoc, rls,
rust-analyzer, clippy, miri, rust-src, etc.

Components availability may vary between different releases and toolchains.
Custom toolchains are also supported to have local builds, etc.

One type of toolchains is Channels.

3 different cycles:

o Stable: 6 weeks
o Beta: Released before a stable
o Nightly: Daily

example on ¥ master [?] is @ v0.1.0 via & v1.46.0 on & ap-southeast-1
» rustup toolchain install nightly-2020-10-25-x86_64-unknown-1inux-gnu

info: syncing channel updates for 'nightly-2020-10-25-x86_64-unknown-1linux-gnu
info: latest update on 2020-10-25, rust version 1.49.0-nightly (ffa2e7ae8 2020-10-24)
info: downloading component 'cargo’

info: downloading component 'clippy'

info: downloading component 'rust-docs'

13.6 MiB / 13.6 MiB (100 %) 8.5 MiB/s {

info: downloading component 'rust-std’

22.3 MB / 22.3 MiB (100 %) 8.5 MiB/s i

info: downloading component 'rustc'

55.1 MiB / 55.1 MiB (100 %) 6.2 MiB/s i

info: downloading component 'rustfmt'

info: installing component 'cargo

info: Defaulting to 500.0 MiB unpack ram

info: installing component 'clippy’

info: installing component 'rust-docs

info: installing component 'rust-std’

22.3 MiB / 22.3 MiB (100 %) 13.3 MiB/s

info: installing component 'rustc

55.1 MiB / 55.1 MiB (100 %) 14.2 MiB/s

info: installing component 'rustfmt'

nightly-2020-10-25-x86_64-unknown-1linux-gnu installed - rustc 1.49.0-nightly (ffa2e7ae8
2020-10-24)

info: checking for self-updates

example on ¥ master [?] is @ v0.1.0 via 4 v1.46.0 on & ap-southeast-1 took 22s
) rustup default nightly-2020-10-25-x86_64-unknown-linux-gnu

info: using existing install for 'nightly-2020-10-25-x86_64-unknown-1inux-gnu
info: default toolchain set to 'nightly-2020-10-25-x86_64-unknown-1linux-gnu

nightly-2020-10-25-x86_64-unknown-1linux-gnu unchanged - rustc 1.49.0-nightly (ffa2e7ae8
2020-10-24)

example on Y master [?] is @ v0.1.0 via 4 v1.49.0-nightly on & ap-southeast-1
>

Compilation

From Code to Binaries

Formatting & Linting
IDE Experience
Documentation
Compilation

Testing

Package Management

Compilation

From Code to Binaries

Formatting & Linting
IDE Experience
Documentation
Compilation

Testing

Package Management

rustfmt

e A tool for formatting Rust code according to style guidelines.

e Very configurable and follows the Rust style quide.

e Usually ran by running "cargo fmt to use the multiplexing
capabilities.

e Useful to enforce styling guidelines across rust repos to have
common way of understanding code.

https://github.com/rust-dev-tools/fmt-rfcs/blob/master/guide/guide.md

rust-clippy

e C(ollection of lints to catch common mistakes and find
Improvements.
e Over 400 lints included.
e Types:
o Perfimprovements
o Correctness bugs
o Ildiomatic Rust code
o Simplicity, etc

N

fn main() {
let 1 = 0;

while 1 > 5 {
println!("inside loop");

}

L N N

example on ¥ master [?] is @ v0.1.0 via & v1.49.0-nightly on @ ap-southeast-1
) cargo clippy
Checking example v0.1.0 (/home/tarunp/work/example)
error: variables in the condition are not mutated in the loop body
--> src/main.rs:4:11
I
while 1 > 10 {

I ANNANANAN

note: “#[deny(clippy::while_immutable_condition)] on by default

note: this may lead to an infinite or to a never running loop

help: for further information visit https://rust-lang.github.io/rust-clippy/master
/index.html#while_immutable_condition
error: aborting due to previous error

error: could not compile "example’

To learn more, run the command again with --verbose.

Compilation

From Code to Binaries

Formatting & Linting
IDE Experience
Documentation
Compilation

Testing

Package Management

rust-analyzer

e Implementation of Language Server Protocol for Rust.

e Adds Intellisense, Refactoring, etc to your favourite Editors
and |IDE's.

e Improves performance drastically compared with that of
RLS.

e |everages on-demand code analysis to be faster by
performing Incremental Compilation.

Compilation

From Code to Binaries

Formatting & Linting
IDE Experience
Documentation
Compilation

Testing

Package Management

rustdoc

e Allows generation of documentation for Rust projects.

e Documentation goes hand in hand with Code i.e above the
types, etc.

e (enerates a markdown site that on top of the rust.docs Ul
framework.

e ///is syntax sugar for #[doc], which is used to write
documentation.

/// A human being is represented here

pub struct Person {
/// A person must have a name, no matter how much Juliet may hate it
name: String,

}

impl Person {
/// Returns a person with the name given them
/17
/// # Arguments
/17
/// * “name’® - A string slice that holds the name of the person
/17
/// # Examples
/17
/77 "
/// // You can have rust code between fences inside the comments
/// // If you pass --test to ‘rustdoc’, it will even test it for you!
/// use doc::Person;
/// let person = Person::new("name");
TR
pub fn new(name: &str) -> Person {
Person {
name: name.to_string(),

}

Gives a friendly hello!

Says "Hello, [name]" to the “Person’ it is called on.
fn hello(& self) {
println!("Hello, {}!", self.name);

Struct example::P

-] A human being is represented here

Fields

name:
A person must have a name, no matter how much Juliet may hate it

Implementations

impl
pub fn (name: &) => Pe
Returns a person with the name given them

Arguments

® name - A string slice that holds the name of the person

Examples

doc: :Person;
person = Person::new(

pub fn (&self)
Gives a friendly hello!

Says "Hello, [name]" to the Person it is called on.

Compilation

From Code to Binaries

Formatting & Linting
IDE Experience
Documentation
Compilation

Testing

Package Management

example on ¥ master [?] is @ v0.1.0 via & v1.49.0-nightly on & ap-southeast-1
) cargo build
Compiling example v0.1.0 (/home/tarunp/work/example)
Finished dev [unoptimized + debuginfo] target(s) in 0.18s

example on ¥ master [?] is @ v0.1.0 via & v1.49.0-nightly on & ap-southeast-1
) tree ./target
./target
— CACHEDIR.TAG
L— debug
— build
— deps

— example-elcfc7d679a24b26

L— example-elcfc7d679a24b26.d

example

example.d

examples

incremental

L example-y4053mv32kul

f— s-fsqxvxzdea-te7001-3ewy@s42ipkr2

— 1df20t0wrx8kbOga.o
F— 1h2maanulcl148bg.
F— 2n1374q0ytz3s4gn.
— 2xsg8loghbd362j5.
F— 307ui5ptd6hhevxp.
F— 301wu03jdwu4hn9o.
f— 3302f5k0d1jd19ey.
F— 4sn41suyx6wtq4ddy.
— 8a01z114169tynp.o
f— dep-graph.bin
— query-cache.bin
L— work-products.bin
L— s-fsqxvxzdea-te7001. lock

7 directories, 18 files

Compilation

From Code to Binaries

Formatting & Linting
IDE Experience
Documentation
Compilation

Testing

Package Management

“test Attribute

e cargo test creates a test runner binary that runs functions
annotated with test attribute.

e Reports are also produced on the function outcome.

e Unit tests are present in the src directory itself.

e |Integration tests are present in /tests directory instead.

#[cfg(test)]
mod tests {
#[test]

fn 1t_works() {

A
assert_eq!(9 + 1,10);

o000

example on ¥ master [?] is @ v0.1.0 via & v1.49.0-nightly on @ ap-southeast-1
) cargo test
warning: unused manifest key: target.armv7-unknown-1linux-musleabihf.linker
Compiling example v0.1.0 (/home/tarunp/work/example)
Finished test [unoptimized + debuginfo] target(s) in 0.20s
Running target/debug/deps/example-def7f933857c86de

running 1 test
test tests::example ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

Compilation

From Code to Binaries

Formatting & Linting
IDE Experience
Documentation
Compilation

Testing

Package Management

Dependency Management
Workspaces

Features

Binary Management

Cargo

More than a package manager

Dependency Management
Workspaces

Features

Binary Management

Cargo

More than a package manager

Cargo

Manage dependencies and have repeatable builds.
Metadata files to keep track of the package information.
Performs builds by fetching package dependencies.
Introduces a package layout.

Acts like an umbrella tool for most operations.

® .

[package]

name = "example"

version = "0.1.0"

authors ["Your Name <you@example

edition = "2018"

[dependencies]
Tiimes =Nt 0112
regex = "0.1.41"

Dependency Management
Workspaces

Features

Binary Management

Cargo

More than a package manager

Cargo Workspaces

Workspace allows grouping a set of packages.

Each package can be a binary or a library crate.

It can help manage multiple related packages.

Configured by adding a [workspace] section into Cargo.toml|
Packages share a common Cargo.lock and output directories
(i.e target).

0o

[workspace]

members = [
"tracing",
"tracing-core",
"tracing-attributes",
"tracing-error",
"tracing-flame",
"tracing-futures",
"tracing-tower",
"tracing-log",
"tracing-macros",
"tracing-opentelemetry",
"tracing-subscriber",
"tracing-serde",
"tracing-appender",
"tracing-journald",
"examples"

Dependency Management
Workspaces

Features

Binary Management

Cargo

More than a package manager

Features

Rust compiler has built in support for compile time feature
flags.

Based on the feature flags configuration, The compilation is
affected.

This is possible by using the "cfg™ attributes in code.

Very useful for packages to have multiple feature levels
based on the dependencies.

A feature of a package is either an optional dependency, or a
set of other features.

&
L5l

[features]
default = ["std"]
alloc = []

std = ["lazy_static", "alloc"]

[badges]
maintenance = { status = "actively-developed" }

[dependencies]
lazy_static = { version = "1", optional = true }

00

#[cfg(feature = "std")]
mod inner {

// implementation with the usage of “std’
I G

#[cfg(not(feature = "std"))]

mod inner {
// implementation without the usage of "std’
Lh

[dependencies]
tracing-core = { version = "0.2", default-features = false, features = ["alloc"] }

Dependency Management
Workspaces

Features

Binary Management

Cargo

More than a package manager

Cargo with Binaries

Cargo is built to be extensible with new commands without
having to modify cargo itself.

‘cargo expand' invokes ‘cargo-expand’ from SPATH.

Binaries can also be published on crates.io

Cargo install can be used to retrieve and install binaries.
These binaries are installed into "SHOME/.cargo' unless
overridden.

https://crates.io/

@

example on § master [?] is @ v0.1.0 via & v1.49.0-nightly on & ap-southeast-1
» cargo install cargo-expand
Updating crates.io index
Ignored package "cargo-expand v1.0.0° 1is already installed, use --force to override

example on ¥ master [?] is @ v0.1.0 via & v1.49.0-nightly on @ ap-southeast-1 took 20s
) cargo expand

Checking example v0.1.0 (/home/tarunp/work/example)

Finished check [unoptimized + debuginfo] target(s) in 0.04s

#![feature(prelude_import)]
#[prelude_1import]
use std::prelude::vl::*;
#[macro_use]
extern crate std;
fn main() {
let mut count = 0;
{
::std::io::_print(::core::fmt::Arguments
&["Let\'s count until infinity!\n"],
&match () {
() = II,

count += 1;

Logging

° ([
Debugging e Tracing
e GDB
Finding bugs and runtime

diagnostics.

Logging

° ([
Debugging e Tracing
e GDB
Finding bugs and runtime

diagnostics.

Crate log

Contains debug’, error, info, log’, trace, warn macros
to report.

Abstracts over the actual logging implementation.
Consumer of a library can decide which implementation they
want to use.

Low overhead when no implementation is specified.

Simple APl to implement your own logger implementation

® 0

use log::{info, warn};

pub fn shave_the_yak(yak: &mut Yak) {
info!(target: "yak_events", "Commencing yak shaving for {:?}", vyak);

loop {
match find_a_razor() {

Ok(razor) => {
info!("Razor located: {}", razor);
yak.shave(razor);
break;

}

Err(err) = {
warn!("Unable to locate a razor: {}, retrying", err);

00

use log::{SetLoggerError, LevelFilter};

static LOGGER: SimpleLogger = SimplelLogger;

pub fn init() -> Result<(), SetLoggerError> {
log: :set_logger(&LOGGER)
.map(|()|] log::set_max_level(LevelFilter

[DEBUG
[DEBUG
[DEBUG
[DEBUG
[ERROR
[DEBUG
[DEBUG
[DEBUG
[DEBUG
[DEBUG
[DEBUG
[DEBUG
[DEBUG
[DEBUG
[DEBUG

load_log]
load_log]
load_log]
load_log]
load_log]
load_log]
load_log]
load_log]
load_log]
load_log]
load_log]
load_log]
load_log]
load_log]
load_log]

accepted
received
accepted
received
error
accepted
accepted
received
accepted
received
received
accepted
received
accepted
accepted

received from server!

connection from [::1]
request for path "/z"
connection from [::1]
request for path "/Z"

connection from [::1]
connection from [::1]
request for path "/H"
connection from [::1]
request for path "/S"
request for path "/C"
connection from [::1]
request for path "/x"
connection from [::1]
connection from [::1]

status:

:55257
:55258
$100)
+95259
:55260

155261

Logging

° ([
Debugging e Tracing
e GDB
Finding bugs and runtime

diagnostics.

Crate tracing

e More than a logging library.

e Same simple API for consumers.

e Implements scoped, contextual, and structured diagnostic
Instrumentation.

e Introduces a new primitive called Span, which represents a
period of time.

e Useful for Asynchronous Systems, Distributed Tracing
Instrumentation, etc.

XX

use tracing::{info, warn};

pub fn shave_the_yak(yak: &mut Yak) {
info!(target: "yak_events", "Commencing yak shaving for {:?}", yak);

loop {
match find_a_razor() {

Ok(razor) => {
info!("Razor located: {}", razor);
yak.shave(razor);
break;

}

Err(err) => {
warn!("Unable to locate a razor: {}, retrying", err);

use tracing::instrument;

#[instrument]

pub async fn connect_to(remote: SocketAddr) -> 1o0::Result<TcpStream> {
//

trace!(bytes_read, messages = num_processed);

® 0

TRACE request{req.method=GET req.path="/z"}: load: handling request...

TRACE request{req.method=GET req.path="/z"}: load: error=i1 don't like this letter. letter="2z"

TRACE request{req.method=GET req.path="/z"}: load: rsp.error=unknown internal error

ERROR load_gen{remote.addr=[::1]:3000}:request{req.method=GET req.path="/z"}: gen: error received from
server! status=500

TRACE load_gen{remote.addr=[::1]:3000}:request{req.method=GET req.path="/z"}: gen: response complete.
rsp.body=unknown internal error

TRACE load_gen{remote.addr=[::1]:3000}:request{req.method=GET req.path="/z"}: gen: sending request...
TRACE load_gen{remote.addr=[::1]:3000}:request{req.method=GET req.path="/z"}: tower_buffer::service:
sending request to buffer worker

DEBUG request{req.method=GET req.path="/z"}: load: received request. req.headers={"content-length":
"24", "host": "[::1]:3000"} req.version=HTTP/1.1

TRACE request{req.method=GET req.path="/z"}: load: handling request...

TRACE request{req.method=GET req.path="/z"}: load: error=1 don't like this letter. letter="z"

TRACE request{req.method=GET req.path="/z"}: load: rsp.error=unknown internal error

Logging

° ([
Debugging e Tracing
e GDB
Finding bugs and runtime

diagnostics.

GDB (GNU Debugger)

e GNU Project debugger, allows us to understand what is going on inside the
program while it executes.

e Using GDB, the program’s running can be controlled and get information
from inside the code.

e |tallows users to apply breakpoints and retrieve runtime information i.e
variables, stacks, etc.

e |talso has support for various languages like C, C++, Go, etc.

e ‘rust-gdb’ is a wrapper that provides pretty printers specific to rust, etc.

fn main() {

let mut count = Qu32;
println!("Let's count until infinity!");
// Infinite loop
loop {

count += 1;

hECcotnER=—E 3=

println!("three");

// Skip the rest of this iteration

continue;

}
println!("{}", count);
1 cOUnER==R58
println!("OK, that's enough");

// Exit this loop
break;

X X

The development profile, used for "cargo build

[profile.dev]

opt-level = 0 # Controls the --opt-level the compiler builds with
debug = true # Controls whether the compiler passes -g

The release profile, used for cargo build --release’
[profile.release]

opt-level =

debug = false

(N N

example on ¥ master [?] is @ v0.1.0 via & v1.49.0-nightly on & ap-southeast-1 took 34s
> gdb -q ./target/debug/example

Reading symbols from ./target/debug/example...

warning: Missing auto-load script at offset 0 in section .debug_gdb_scripts
of file /home/tarunp/work/example/target/debug/example.

Use "info auto-load python-scripts [REGEXP]' to list them.

(gdb) b 8

Breakpoint 1 at 0x53b2: file src/main.rs, line 8.

(gdb) r

Starting program: /home/tarunp/work/example/target/debug/example

[Thread debugging using libthread_db enabled]

Using host libthread_db 1library "/usr/lib/libthread_db.so.1".

Let's count until infinity!

1l

2

Breakpoint 1, example::main () at src/main.rs:8
8 println!("three");

(gdb) p count

$1 = 3

(gdb)

Thank You! £k
Questions?

