
How to Revive a
Dead Rust Project
Carlo Supina
Micah Tigley

About Carlo

● Welder

○ Pursuing AWS certification

● Runs education company

○ micronote.tech

○ Micropython guides

○ Videos and articles

● Tinkerer and Designer

○ Electronics

○ PCB design

○ 3D part design

○ 3D printing

Carlo’s Path into Rust

● Embedded Rust with STM32F0DISCOVERY

○ RC rover with infrared camera

● Kibrarian: Kicad schematic and footprint manager

○ Project for learning “conventional” Rust

● space_shooter_rs: Space Shooter Game made with Amethyst Engine

○ Inspired by The Binding of Isaac

About Micah

● Software Engineer at Mozilla

● Background in front-end web development

● Interested in learning Rust and game

development in my spare time

Micah’s Path into Rust

● Made contributions to existing open-source Rust projects

● Game development with Rust, Amethyst

○ Learned about ECS

● RustConf talk on game development

Origin of space_shooter_rs

● Making games is a fun way to learn a new language

● Discovered Amethyst through arewegameyet.rs

● Started working on a simple space shooter style game

● space_shooter_rs was chosen to be a showcase game

Encountering Roadblocks

● Initially a project for learning Rust

○ Contained mistakes that a person new to Rust would make

○ Unorganized due to being new to ECS architecture of Amethyst

● Game contained large components with redundant data

● Difficult for me to continue contributing to

● Difficult for new people to contribute to

● Aware that refactoring was needed

Teaming up! (Carlo’s Perspective)

● Watched Micah’s Rustconf talk about her experiences with

Amethyst

● Thought she would be a great person to collaborate with on

space_shooter_rs

○ Passion for game development

○ Knowledge of industry practices

○ Similar experience level with Amethyst

● Reached out after...

○ ...determining if I had time to commit to the project

○ ...I had a plan to catch her up with the project

○ ...I had a rough idea of what needed to be worked on first

Teaming up! (Micah’s Perspective)

● Learn more about working on a game made with Amethyst

● Expand on basic ECS concepts

● Learn game development in a collaborative environment

What We’ll be Talking About

● Summary of “space_shooter_rs”

● Refactoring ECS code

● Strategy and planning a refactor

Summary of space_shooter_rs
● Inspired by The Binding of Isaac

○ Collectable items that synergize

○ Randomly generated levels

○ Satisfying controls

● Features currently in the game

○ 3 Enemies

○ 13 Items

○ 4 Consumable drops

○ A Store and currency

○ Animations

○ 3D backgrounds

○ WIP boss

Back to the Basics

Quick ECS summary:

● Entity-Component-System

● Favors easily composable objects

● Data-driven approach

Entity-Component-System

Entity, often represented with a single ID, can be
composed of a number of components

Component acts like a container for data that can describe
an aspect of an object

A system is a piece of logic that can operate on one or
more entities in a game.

Entity Examples

Entity # 1

Entity # 3

Entity # 2

Entity #4

Entity # 5

Health

Movement

AttackSpriteRender

EnemyTag

PlayerTag

Animation

A collection of components make up an entity.

Entity Examples (continued)

Entity # 1

Health
Movement

AttackSpriteRender

Entity # 2

Component Storages

Transform Component Storage SpriteRender Component Storage

SpriteRender

.

.

.

SpriteRender

Transform

.

.

.

Transform

Entity # 1

Entity # 2

Component storages are responsible for containing and
managing components of one type.

Every component has an entity they’re associated with.

SpriteRender

.

.

.

SpriteRender

Systems

Time Resource

Animation
Storage

SpriteRender
StorageAnimation System

Animation
for “strafer”

enemy

Breaking Down Components

Avoiding components that:

● Are bloated

● Had redundant data

● Were difficult to reuse

Define a Set of Requirements

What is the expected behaviour of an entity?

● Helps conceptualize how the components of an entity

work together

● Emphasize pieces of functionality of an entity instead

of as a whole

Breaking down Spaceship and Enemy

Spaceship and Enemy component had redundant data for motion.

Motion2D Component

Entities with motion (movement, speed, etc…) should have a

Motion2D component.

Containable Systems Example: Items

● Core progression in the game is acquiring items

○ Items can be purchased from the store

○ Modify rules of the game to advantage the player

● Items provided a unique challenge to implement

○ Items meant to affect every part of the game

○ How do you keep the systems lean if they all need

to know if an item was collected?

Containable Systems Example: Items

Sharply increases fire rate of blasts

Collision with
player detected in
collision system

Item attributes
added to player in
spaceship system

SpaceshipItemCollisionSystem

SpaceshipSystem

?

Event Channel: Analogy

Event Channel

SpaceshipSystemSystem A

System B

SpaceshipItemCollisionSystem

ItemGetEvent

ItemGetEvent

Containable Systems Example: Items

Sharply increases fire rate of blasts

Collision with
player detected in
collision system

Item attributes
added to player in
spaceship system

SpaceshipItemCollisionSystem

SpaceshipSystem

“Item Get” event
channel

ItemGetEvent

Progress Beyond Writing Code

● Collaborative coding practices

● Writing documentation together

● Communication

● Weekly meetings

Collaborative Coding Practices
● Originally was not using Github to full extent

○ Used as a place to store and distribute the files

● Learned about collaborative tools from Micah by following her lead

○ Issues

○ Branches

○ Pull Requests

○ Code Reviews

● Kept code reviews public even though we have a direct communication line

○ Keeps decisions transparent

Documentation

● README.md as an entry point into Space Shooter

● mdBook

○ Preview book at: amethyst.github.io/space_shooter_rs

○ Contributing and Code of Conduct guidelines

○ Guides for adding new items

Preview the book at: amethyst.github.io/space_shooter_rs

Weekly Meetings: Discussion of Goals

● Short term goals

○ Example: Refactoring a bloated component into multiple,

smaller, more general components

● Long term goals

○ Example: Adding a “boss” enemy to the game, and what kind of

components, entities, and systems it would require

● Project Goals

○ Discussion of the future for space_shooter_rs as a project

○ What level of documentation should we have?

○ Do we plan on selling a version of the game?

Weekly Meetings: Sharing Ideas

● Some ideas are bad, but all ideas are worth sharing

● Examples:

○ Character abilities

○ Items

○ Bosses

○ Game structure

Discussions on Github

● Issues

● Code reviews

Issue regarding weapon components:
https://github.com/amethyst/space_shooter_rs/issues/49

Direct Messaging

● Less relevant

● Ideas not ready for public

○ Feature ideas not relevant to main goal (refactoring)

○ Off-topic implementation ideas

Informal Documents

● “Current State” Document

○ Game as it currently was

● “Ideal State” Document

○ Ideal version of the game

○ Later transformed into casual

place to share ideas

Formal Documents: Flowchart

Formal Documents:
Minimum Viable Product(s)

● space_shooter_rs as a showcase game

○ Just enough content to be an example for others

● space_shooter_rs as a fully released game

○ Maximize fun

○ Balance the game to be fair

○ Story

In Summary

● Engaging regularly in open discussion is beneficial to

capturing project progress

● Documentation is important for solidifying

knowledge about project architecture decisions

● Share ideas regularly to keep everyone on the same

page

Call to Action

We’re happy to help anyone get started with contributing
to Space Shooter! If you interested in helping out with...

● Code

● Art

● Documentation

Feel free to reach out!

Carlo: cdsupina@micronote.tech

Micah: Discord: Micah#1331

Questions?

