
Architect a High-performance
 SQL Query Engine in Rust

Jin Mingjian

RustFest Global 2020

Outline
● Introduction

● Related works

● Engineering in Rust

● System and Language

● Execution

● Evaluation

● Future insights

Introduction
● Jin Mingjian

● Ph.D., Data nerd

● Fields: bigdata engineering, high performance infrastructure,
language and system

○ Cassandra, Spark, Impala, Kudu, ClickHouse...

○ jinmingjian.xyz/resume

Introduction
● For this talk

○ Works and practices in my recent open-source project TensorBase
which is building a modern big data warehouse with Rust and its friend
C

○ So, all working codes which covered or not covered in this talk are
available in the site: tensorbase.io

Introduction
● For audiences of this talk

○ Keep content as simple as possible

■ Indeed both high performance and bigdata system are hard

○ Implementation details are ignored intentionally

■ All are available on the project sites

○ Ask questions, re-read this presentation or join the community

Related works
● Related projects in Rust

○ [DataFusion](https://github.com/apache/arrow/tree/master/rust/datafus
ion)

■ Use (but not control) Apache Arrow

■ Far-from-performance-oriented architecture: Mixed Arrow and Rust
operator impls (in AOT) (traditional design)

■ (opensource) Spark is a bottom baseline from the view of performance

● The state-of-the-art speed is 100x faster than that of Spark

https://github.com/apache/arrow/tree/master/rust/datafusion
https://github.com/apache/arrow/tree/master/rust/datafusion

Related works
● Ruby Y. Tahboub et. al., "How to Architect a Query Compiler,

Revisited"

○ Paper only but inspires TensorBase

○ Generative programming v.s. TensorBase's pipeline based IR and
literal codegen

○ Generative representations on op-level are verbose and slow to
compile

○ (generative) Style is orthogonal to performance

Related works
● Shoumik Palkar et. al., "Weld: A Common Runtime for High

Performance Data Analytics"

○ Dedicated Weld IR for data vs TenosrBase's in-language IR

■ Abstract overhead

○ Deep binding to LLVM apis which is hard to upgrade without LLVM experts

● Problem of academic papers

○ Less engineering oriented

○ Hard to be validated by the public

Engineering in Rust

Engineering in Rust
● Engineering

○ Engineering oriented language design makes development agile and
comfortable

○ TensorBase benefits from

■ Crates ecosystem, cargo, tooling/IDE, modules, macros,
language(memory safe), language(zero-overhead C interop),
language(ADT)

■ TensorBase: one-person project in several months (hope more to join in:)

Engineering in Rust
● General aspects of TensorBase in engineering

○ Performance designed in core

○ Modernization

■ Bleeding edge nightly

■ Good practices

○ KISS

■ Minimization of Dependencies

■ Highly hackable

Engineering in Rust
● Cargo

○ Highly extensible

○ Useful commands (except that most commonly used):

■ add: for add latest version of deps

■ expand: for proc macro debugging

■ tree: for transitive deps checking

Engineering in Rust
● Proc macro

○ Problems

■ Learning curve is high

■ Too many out-of-date materials but less practices

■ Tooling is in primary stage

■ Hard to debug

Engineering in Rust
● Proc macro (cont.)

○ Suggestions

■ use nightly as possible

■ enable feature nightly proc_macro_diagnostic, proc_macro_span for
better debugging output

■ Proc_macro2 should improve the testability

Engineering in Rust
● C interoperability

○ Zero overhead

○ Resource management

■ Objects in C is managed manually but not in safe Rust

○ Error handling

○ Too many “unsafe”s and “as”

■ Nice watch PR: [RFC - Safer Transmute](/rfcs/pull/2981)

Engineering in Rust
● Concurrency

○ Nice for share-nothing thread safety

○ Awkward when memory sharing needed

■ Memory sharing - cornerstone of modern multicores

■ High frequency copy is a performance disaster

■ “Channel” is behind on sharing

○ Lack memory model like in Java/C++

Engineering in Rust
● Concurrency (cont.)

○ E.g. Global (Safe) Sharing/Singleton

Question: Oneshot change to the global but not at the declaration point?

Safe Rust: Lazy lock

Comment: Locks are heavy. It could be safe if have change(write) “happens before”
use(read) (common high-perf pattern in Java)

Engineering in Rust
● Concurrency (cont.)

○ Async-await

■ Style is orthogonal to performance

■ Great concept but too deep boxing in kinds of implementations

● Hard to debug when something wrong

■ Not used in TensorBase now

Engineering in Rust
● Lifetime

○ Engineering excellence but make codes complex

■ Always recommends: to dance with, rather than to evade

■ Compiler enforces more than that needed when not smart

○ Alternatives

■ Arena allocator: TensorBase IR

■ Unsafe into C: TensorBase kernel algorithms in C

System

Language
● Input

○ Query: Plain SQL

■ Not necessarily SQL

● Parse Tree

○ PEG, based on [Pest](https://github.com/pest-parser)

○ Lexical validation

○ (free-style) AST

Language
● IR (Intermediate Representation)

○ Layered

○ No reinventing

■ Reuse modern low-level compilation infra as possible

■ Many optimizations in popular engines not needed any more

■ e.g. CSE(Common Subexpression Elimination)

■ select (a+123) as c1, (a+123)*2 as c2 from ...

Language
● HIR (High-level IR)

○ Data related optimizations which can be not handled by low levels
compilers

■ Semantic validation

■ Relational Algebra

● e.g. predicate pushdown

■ Some RAs can be optimized by low-level compiler

Language
● HIR (High-level IR) (cont.)

○ Unified RA operators

■ Core: 4 ops

■ ->(map), +(union/agg), *(join), <>(sort/top)

■ Inspired by J. Kepner's associative array

■ In Rust...

Language

op data op attributes

Prettyprinted Dump of HIR

Language
○ “Sea of pipes”

■ Unify data and control-flow dependencies in graph of "pipes"

○ Pipe (a.k.a. Pipeline) (note: back to the dump)

■ Operator-fused computing/data unit (being extended to more)

■ Operator-level volcano model is systematically low inefficient

■ Unified dual view - Data and Op

■ No more pull or push style, no more data center or control center

Language
● LIR (Low-level IR)

○ Low level optimizations which can be not handled by low level
compilers and not conveniently handled by high level logics

○ Platform related semantics

■ e.g. multi-cores + codegen

■ Boundaries between the high and low are not fixed

■ Scheduling will join later

Language
● LIR (Low-level IR) (cont.)

○ Parallelization representation for multi-cores

■ Generic DAG scheduling has abstract overhead

■ TensorBase: enable parallelism patterns

● Map/reduce, fork-join…

○ Linearization representation for codegen

■ Proc macro template: provide human readable linear mapping from LIR to
C primitives

Language
● LIR (Low-level IR) (cont.)

○ Right C template enables
a simple map reduce
pattern

○ Free style human oriented
string interpolation

○ Runnable and debuggable
in IDE with some setups

Generated map bodyC code template

Reduce
body

Language
HIR LIR

Execution
● Core

○ Decentralized, self-scheduling, JIT compilation based kernel

○ Decentralized != embarrassingly parallel

■ v.s. Popularly centralized scheduling

○ Why JIT compilation

■ Top performance

■ Arch agnostic

Execution
● Engine

○ Modified Clang based C JIT compiler

○ vs. popular LLVM IR based JIT engine(ClickHouse, Apache Impala...)

● Why C

○ Run on (almost) everything (CPU/GPU/FPGA/Accel)

○ Human debuggable

○ Fast enough compilation for OLAP

Execution

v.s.

TensorBase generated kernel Ruby Y. Tahboub et. al., Sigmod18

Evaluation
Phase Language

(TensorBase M0) Time Ref Time
(from public)

Language
(Ref

system)

Parsing (TPC-DS) Rust 130 us** ~50 us* C++

Parsing/IR/codegen
(one column sum) Rust 130 us** ~1 ms* C++

C Kernel JIT
Compilation C/C++

13 ms (boost) -
20 ms (no boost)
(Q#1 like, -O2)**

59 ms*
(TPC-H Q#1, opt.) C++

End-to-end Query
Time (one column

sum with 1.47B row
NYC taxi dataset)

Almost in Rust
(mixed)

~60 ms (compilation
cached)-

~100 ms(compilation
uncached)**

642 ms**
In ClickHouse

20.05
(compilation

cached)

C++

* André Kohn et. al., DOI: 10.1109/TKDE.2019.2905235

** TensorBase M0 benchmark: https://tensorbase.io/

Evaluation
● Points (part 1)

○ Rust is lighting fast even untuned (but not Rust compilation)

○ C based JIT Compilation is lighting fast even untuned (on par with
LLVM IR)

○ C based JIT Compilation is much faster than C++ (and Rust) even
untuned

○ C based JIT Compilation is quite enough for OLAP even untuned

● Points (part 2)

○ Saturates memory bandwidth in core of such runs

■ Can’t not be faster in single 6-channel xeon sp with 100GB/s memory
bandwidth(measured by vtune) for memory bound applications

■ Napkin math: 1.47*4/100 = ~0.06 sec (= 60msec)

■ Simple sum aggregation query
=> Tight loop in kernel and finally
vectorized by compiler

Evaluation

Evaluation
● Points (part 3)

○ Partial compilation

■ Makes compilation time of TensorBase is correlated to the size of hot
kernel (rather than the total size of execution codes)

○ Lower bound of LLVM compilation overhead is high

■ -O0: ~9ms for helloworld (untuned)

■ Too many passes

■ Speed does not come for free

Future insights
● Storage layer

○ Popular storage and compute separation is genetically less efficient

● Optimizer

○ Makes the queries which can not be optimized fastest

○ Data driven, low entropy inference (e.g. category theory)

● Execution engine

Future insights
○ Tiered C compilation

■ OLTP style wants faster codegen

■ C compilation/interpretation possibly done in microseconds or less

○ Alternative JIT compilation choices

■ e.g. Rust + Cranelift codegen (JIT) backend

○ Scheduling

Future insights
● Modern hardware oblivious

● Distributed

○ Techniques on single node does *NOT* mean they only works for single node

○ Consistency as plugin

● Engineering

○ Contracts and formal verifications

○ Rust - C - Rust chaining and maximized engineering Rust

Future insights
● TensorBase 2020.11 (WIP)

○ Main operators on on single table

○ Storage Layer v1

○ Compatibility and hybrid deployment with ClickHouse

■ Compatible to ClickHouse Native Protocol

■ Partially compatible to ClickHouse on-disk data storage (read-only)

Future insights
● TensorBase 2020.11 (WIP) (cont.)

○ Superb in complex aggregations (e.g. group by)

○ Early results (compared to ClickHouse)

■ 6x faster in several “group by” queries on top of ClickHouse MergeTree
storage with a real-world billion level dataset

■ 10x faster if do some simple optimizations

■ Faster results expected when TensorBase own storage coming

Recap
● Abstract overhead everywhere

○ Carefully make trade-offs

● High-performance programming paradigm in Rust

○ Safe(almost) + unsafe (bounded but more freedom)

● Top performance OLAP is firstly achieved with engineering Rust

○ All shown can be picked up from the open source project (tensorbase.io)

Thanks

