Architect a High-performance
SQL Query Engine in Rust

Jin Mingjian

e Introduction

e Related works

e Engineering in Rust

e System and Language
e Execution

e Evaluation

e Future insights

Introduction
e Jin Mingjian
e Ph.D., Data nerd

e Fields: bigdata engineering, high performance infrastructure,
language and system

o Cassandra, Spark, Impala, Kudu, ClickHouse...

o jinmingjian.xyz/resume

Introduction

e F[or this talk

o Works and practices in my recent open-source project TensorBase

which is building a modern big data warehouse with Rust and its friend
C

o So, all working codes which covered or not covered in this talk are
available in the site: tensorbase.io

Introduction

e For audiences of this talk
o Keep content as simple as possible
m Indeed both high performance and bigdata system are hard
o Implementation details are ignored intentionally
m All are available on the project sites

o Ask questions, re-read this presentation or join the community

Related works

e Related projects in Rust

o [DataFusion](https://qgithub.com/apache/arrow/tree/master/rust/datafus
ion)

m Use (but not control) Apache Arrow

m Far-from-performance-oriented architecture: Mixed Arrow and Rust
operator impls (in AOT) (traditional design)

B (opensource) Spark is a bottom baseline from the view of performance

® The state-of-the-art speed is 100x faster than that of Spark

https://github.com/apache/arrow/tree/master/rust/datafusion
https://github.com/apache/arrow/tree/master/rust/datafusion

Related works

e Ruby Y. Tahboub et. al., "How to Architect a Query Compiler,
Revisited"

o Paper only but inspires TensorBase

o Generative programming v.s. TensorBase's pipeline based IR and
literal codegen

o Generative representations on op-level are verbose and slow to
compile

O (generative) Style is orthogonal to performance

Related works

e Shoumik Palkar et. al., "Weld: A Common Runtime for High
Performance Data Analytics"

o Dedicated Weld IR for data vs TenosrBase's in-language IR
m Abstract overhead

o Deep binding to LLVM apis which is hard to upgrade without LLVM experts

e Problem of academic papers
o Less engineering oriented

o Hard to be validated by the pubilic

Engineering in Rust

parse

semantically

transform
Parse -
optimize
Tree P
-> Rust
: Rust/C FFI

codegen

Engineering in Rust
e Engineering

o Engineering oriented language design makes development agile and
comfortable

o TensorBase benefits from

m Crates ecosystem, cargo, tooling/IDE, modules, macros,

language(memory safe), language(zero-overhead C interop),
language(ADT)

m TensorBase: one-person project in several months (hope more to join in:)

Engineering in Rust

® General aspects of TensorBase in engineering

o Performance designed in core
© Modernization

m Bleeding edge nightly

m Good practices
o KISS

m Minimization of Dependencies

m Highly hackable

Engineering in Rust

e (Cargo
o Highly extensible
o Useful commands (except that most commonly used):
m add: for add latest version of deps
m expand.: for proc macro debugging

m tree: for transitive deps checking

Engineering in Rust

® Proc macro

o Problems
m Learning curve is high
m Too many out-of-date materials but less practices
m Joolingisin primary stage

m Hardto debug

Engineering in Rust

® Proc macro (cont.)

o Suggestions
m use nightly as possible

m enable feature nightly proc_macro_diagnostic, proc_macro_span for
better debugging output

m Proc_macro2 should improve the testability

Engineering in Rust
® C interoperability

o Zero overhead
o Resource management
m Objects in Cis managed manually but not in safe Rust
o Error handling
o Too many “unsafe”s and “as”

m Nice watch PR: [RFC - Safer Transmute](/rfcs/pull/2981)

Engineering in Rust
e Concurrency

o Nice for share-nothing thread safety

o Awkward when memory sharing needed
m Memory sharing - cornerstone of modern multicores
m High frequency copy is a performance disaster

m “Channel” is behind on sharing

o Lack memory model like in Java/C++

Engineering in Rust
e Concurrency (cont.)

o E.g. Global (Safe) Sharing/Singleton

static CAT: Lazy<Mutex<Catalog>> = Lazy::new(

Llet conf: Conf = Conf::load(load_path: None)
Let schema_dir: String = conf.schema.schema_d

Question: Oneshot change to the global but not at the declaration point?
Safe Rust: Lazy lock

Comment: Locks are heavy. It could be safe if have change(write) “happens before”
use(read) (common high-perf pattern in Java)

Engineering in Rust
e Concurrency (cont.)
o Async-await
m Style is orthogonal to performance
m Great concept but too deep boxing in kinds of implementations

e Hard to debug when something wrong

m Notusedin TensorBase now

Engineering in Rust
e Lifetime

O Engineering excellence but make codes complex
m Always recommends: to dance with, rather than to evade
m Compiler enforces more than that needed when not smart
o Alternatives
m Arena allocator: TensorBase IR

m Unsafe into C: TensorBase kernel algorithms in C

System

semantically
parse transform

Parse
Tree

optimize

-> Rust

Rust/C FFI

-

codegen

complle

- e o o o o o o o o o e

Language
e Input
o Query: Plain SQL
m Not necessarily SQL
e Parse Tree
o PEG, based on [Pest](https://github.com/pest-parser)

o Lexical validation

o (free-style) AST

Language
e IR (Intermediate Representation)

o Layered

o No reinventing
m Reuse modern low-level compilation infra as possible
m Many optimizations in popular engines not needed any more
m e.g. CSE(Common Subexpression Elimination)

m select (a+123) as cl, (a+123)*2 as c2 from ...

Language
e HIR (High-level IR)

o Data related optimizations which can be not handled by low levels
compilers

m Semantic validation
m Relational Algebra
® e.g.predicate pushdown

m Some RAs can be optimized by low-level compiler

Language
e HIR (High-level IR) (cont.)

o Unified RA operators
m Core:4o0ps
m ->(map), H(union/agg), *(join), <>(sort/top)
m Inspired by J. Kepner's associative array

m In Rust...

Language

Prettyprinted Dump of HIR

op data op attributes

Language
o “Sea of pipes”
m Unify data and control-flow dependencies in graph of "pipes"
o Pipe (a.k.a. Pipeline) (note: back to the dump)
m Operator-fused computing/data unit (being extended to more)
m Operator-level volcano model is systematically low inefficient
m Unified dual view - Data and Op

m No more pull or push style, no more data center or control center

Language
e LIR (Low-level IR)

o Low level optimizations which can be not handled by low level
compilers and not conveniently handled by high level logics

o Platform related semantics

B e.g. multi-cores + codegen
m Boundaries between the high and low are not fixed

m Scheduling will join later

Language
e LIR (Low-level IR) (cont.)

o Parallelization representation for multi-cores

m Generic DAG scheduling has abstract overhead
m TensorBase: enable parallelism patterns

e Map/reduce, fork-join...
o Linearization representation for codegen

m Proc macro template: provide human readable linear mapping from LIR to
C primitives

Language
e LIR (Low-level IR) (cont.)

O Right C template enables
a simple map reduce
pattern

O Free style human oriented
string interpolation

O Runnable and debuggable
in IDE with some setups

C code template

map_body¢

s!(

struct Args

{
gen_col_type *part_raw_$gen—co
int32_t id;
inté4_t ret;

}

void reduce(void *args)

ct Args *a = (struct
int32_t id = a—>id;
gen_col_type *part_raw_$gen_co
int32_t num_parts = num_parts;
size_t part_len_gen_col = $gen
size_t span = part_len_gen_col

_ Generated map body

" Reduce
body

Language

@° Data
7~ Agg
= Column
= Derived

=~ Expr

5= Init -
5 Name 5o Node 5o Pipeline == PipeOptKind

7 SubQuery & data_in H & data_in H == Init
& data_out) data_out =~ MapKind
& op Op & nodes V: =~ ReduceKind
== Op
=~ OpAgg
s OpMap
=~ OpNoop
=~ OpTop

Execution

e Core

o Decentralized, self-scheduling, JIT compilation based kernel
O Decentralized = embarrassingly parallel

B v.s. Popularly centralized scheduling

o Why JIT compilation
m [op performance

m Arch agnostic

Execution

e Engine

o Modified Clang based C JIT compiler

o vs. popular LLVM IR based JIT engine(ClickHouse, Apache Impala...)
e WhyC

© Run on (almost) everything (CPU/GPU/FPGA/Accel)

© Human debuggable

o Fast enough compilation for OLAP

inted_t kernel()
{
*blk_raw_cO® = NULL;
char fpath[64];
sprintf(fpath, "/data/n3/data/%d", 0);
ker_scan(&blk_raw_c0, fpath);

t Args s[u8];

pthread t ths[u8];
for (size_t i = 0; i < 48; i+)

{

s[il.id =
s[i].part_raw_c0® = blk_raw_c0;

pthread_create(&ths[i], NULL, reduce, &s[il);

}
for (size_t i = 0; i < 48; i+)

{

TensorBase generated kernel

V.S.

// main function
int main(int x0, charsx x1) {
long x2 = DEFAULT_INPUT_SIZE;
long x3 = x2;
long x4 = 0OL;
charxx x7 = (charx*)malloc(x2 *
sizeof(charx));
charsx x8 = x7;
int* x9 = (intx)malloc(x2 *
sizeof(int));
int* x10 = x9;
long x14 = OL;
bool x15 = false;
int x11 = open("Emp.tbl",0);
long x12 = fsize(x1l);
charx x13 = mmap(0, x12, PROT_READ,
MAP_FILE | MAP_SHARED, x11, 0);
bool x101 = !true;
for (;3) {
// ... parse and load data elided ...
charx* x96 = x8;
charx x53 = x13+x42;
X96[x76] = x53;

Ruby Y. Tahboub et. al., Sigmod18

Phase

Parsing (TPC-DS)

Parsing/IR/codegen
(one column sum)

C Kernel JIT
Compilation

End-to-end Query
Time (one column
sum with 1.47B row
NYC taxi dataset)

* André Kohn et. al., DOI: 101109/TKDE.2019.2905235

Language :
(TensorBase MO0) Time
Rust 130 us**
Rust 130 us**

13 ms (boost) -
C/C++ 20 ms (no boost)
(Q#1 like, -O2)**

~60 ms (compilation

Almost in Rust cached)-
(mixed) ~100 ms(compilation
uncached)**

** TensorBase MO benchmark: https://tensorbase.io/

Ref Time Language
(from public) (Ref
system)
~50 us* C++
~1 ms* C++
59 ms*
(TPC-H Q#1, opt) | ©**
642 ms**
In ClickHouse
20.05 C++
(compilation

cached)

e Points (part 1)
o Rustis lighting fast even untuned (but not Rust compilation)

o C based JIT Compilation is lighting fast even untuned (on par with
LLVM IR)

o C based JIT Compilation is much faster than C++ (and Rust) even
untuned

o C based JIT Compilation is quite enough for OLAP even untuned

e Points (part 2)

o Saturates memory bandwidth in core of such runs

m Can’t not be faster in single 6-channel xeon sp with 100GB/s memory
bandwidth(measured by vtune) for memory bound applications

m Napkin math: 1.47*4/100 = ~0.06 sec (= 60msec)

Simple sum aggregation quer Stee t e o
= p 99 g 9 . y for (size_t i = @; i < blk_len_c@; i+)
=> Tight loop in kernel and finally {

vectorized by compiler int32_t c@ = blk_cO[il;
s += c0,

j

e Points (part 3)

o Partial compilation

m Makes compilation time of TensorBase is correlated to the size of hot
kernel (rather than the total size of execution codes)

o Lower bound of LLVM compilation overhead is high
m -OO0: Y9ms for helloworld (untuned)

m [oO many passes

m Speed does not come for free

Future insights

e Storage layer

o Popular storage and compute separation is genetically less efficient
e Optimizer

o Makes the queries which can not be optimized fastest

o Data driven, low entropy inference (e.g. category theory)

e Execution engine

Future insights

O Tiered C compilation

B OLTP style wants faster codegen

B C compilation/interpretation possibly done in microseconds or less
O Alternative JIT compilation choices

B e.g. Rust + Cranelift codegen (JIT) backend

o Scheduling

Future insights

® Modern hardware oblivious

e Distributed

o Techniques on single node does *NOT* mean they only works for single node

o Consistency as plugin
e Engineering
O Contracts and formal verifications

o Rust - C - Rust chaining and maximized engineering Rust

Future insights

e TensorBase 2020.11 (WIP)

O Main operators on on single table
o Storage Layer v1

o Compatibility and hybrid deployment with ClickHouse
m Compatible to ClickHouse Native Protocol

m Partially compatible to ClickHouse on-disk data storage (read-only)

Future insights

e TensorBase 2020.11 (WIP) (cont.)
o Superb in complex aggregations (e.g. group by)
o Early results (compared to ClickHouse)

m ©6x faster in several “group by” queries on top of ClickHouse MergeTlree
storage with a real-world billion level dataset

m 10x faster if do some simple optimizations

m Faster results expected when TensorBase own storage coming

e Abstract overhead everywhere

o Carefully make trade-offs

e High-performance programming paradigm in Rust

o Safe(almost) + unsafe (bounded but more freedom)
e Top performance OLAP is firstly achieved with engineering Rust

o All shown can be picked up from the open source project (tensorbase.io)

Thanks

